
R2 v2.6 (November 2010) page 1 of 21

R2
 version 2.6 (November 2010)

Andrew Binley

Lancaster University
November, 2010

I
V

I V

Changes to R2 from v2.5

Version 1.3a now outputs results (resistivity, log10 resistivity, sensitivity map, electrode co-
ordinates) in vtk format, allowing easy visualisation with ParaView (which can be downloaded from
http://www.paraview.org/paraview/resources/software.html). See also
http://www.vtk.org/Wiki/The_ParaView_Tutorial for a tutorial on ParaView.

This readme now contains a list of common user errors, which may be helpful for new users.

A 64bit version, R2(x64).exe, is provided in the package, along with the 32bit version (R2.exe).

Computer requirements for R2 v2.6

In this release two versions have been compiled for the Windows environment, one of which account
for processor-specific architecture. Users requiring a version compiled for other processors should
contact the author.

R2 v2.6 (November 2010) page 2 of 21

Introduction to R2 v2.6

NOTE 1: all input files should be prepared with a text editor. [I prefer to use TextPad
(www.textpad.com) because it allows much greater editing facilities although any text editor will
work]. It is important that you do not include tabs in the files. These are often inserted if you copy
and paste from Excel, for example. You should convert these tabs to spaces (TextPad will allow you
to set this up to happen automatically).

NOTE 2: You will be able to run R2 by double clicking the executable. However, if the program
stops abruptly (for example, due to an error in the input file or if you are trying to run an executable
compiled for a different processor architecture) then you will not see any error message on the
screen since the window will disappear. Therefore, it is advisable to run R2 from the Command
Prompt (just run CMD from the Start Menu – you may need to move your working directory and run
R2 from there).

R2 is a forward/inverse solution for 3D or 2D current flow in a quadrilateral or triangular mesh. R2
requires at least two data files: R2.in and protocol.dat. If a triangular mesh is used then an
additional input file – mesh.dat – is required.

R2.in contains information on the geometry of the problem to be solved. protocol.dat contains the
measurement

The mesh is made up of a set of elements. Parameters (for the inverse solution) are made up of one
or more elements. Electrodes are specified at node points. These are the corners of the elements.
The boundary conditions along all four boundaries of the mesh are Neumann conditions (zero flux)
and therefore if you are investigating a half space you must extend left, right and lower boundaries
of the mesh to some distance away from the area of investigation (typically 10 to 20 times the
distance).

The mesh can be made up of either quadrilateral elements or triangular elements.

The current version will work with the following problem size limits:

o Quadrilateral finite element mesh size no larger than 500 nodes in the horizontal or vertical
directions;

o The total number of nodes in the mesh is not greater than 40,000;
o The total number of elements in the mesh is not greater than 30,000;
o No more than 200 unique electrode sites;
o No more than 5000 measurements;
o No more than 30,000 parameters

For a version to work on a larger problem contact the author.

Input specification for R2 v2.6

R2 will output a number of files:

o R2.out which will contain main log of execution.

o electrodes.dat contains the coordinates of the electrodes.

If the problem to be run is a forward model then R2 will output:

R2 v2.6 (November 2010) page 3 of 21

o R2_forward.dat which will contain the forward model for the electrode configuration in

protocol.dat The format of R2_forward.dat is the same as protocol.dat but with 2 extra
columns: the first contains the calculated resistances and the second contains the calculated
apparent resistivities.

o forward_model.dat which will contain the resistivity distribution for your forward model

(i.e. what you specified in the input for R2). Note that the format of these will be the same
as described below for inverse mode.

o forward_model.vtk as above but vtk format (allowing plotting in ParaView, for example).

If the problem to be run is an inverse model then R2 will output:

o f001_res.dat which will contain the resistivity result of the inverse solution. f001_res.dat
will contain four columns: x, y, resis, log10(resis), where x,y are coordinates at centroid of
each element and resis is the resistivity in that element and log10(resis) is log10 of the
resistivity value. The format is setup to work directly with Surfer.

o f001_err.dat will contain nine columns. In the first column is the normalised data misfit,

the second column contains the observed data recorded as an apparent resistivity, the third
column contains the equivalent apparent resistivities for the computed model, the fourth
column shows the original data weight (i.e. data standard deviation in same units as data),
the fifth column is the final data weight, the fifth columns shows a "1" if any weights have
been changed during the inversion, otherwise a "0" will appear, the sixth to ninth columns
show the electrode numbers.

o if you select resolution matrix calculation then f001_rad.dat will contain the diagonal of the

resolution matrix for all elements. A value close to 1 indicates that the parameter for that
element can be resolved perfectly, a value close to 0 indicates that the parameter cannot be
resolved at all. The format is the same as f001_res.dat.

o if you select sensitivity map calculation then f001_sen.dat which will contain the diagonal of

the matrix [JT WT W J] which gives an idea of the mesh sensitivity coverage. You will get a
value for all elements. High values indicate high sensitivity to data, low values indicate poor
sensitivity. Plot on a log scale. The format is the same as f001_res.dat.

o f001_res.vtk will contain resistivity, log10 resistivity, log10 sensitivity (if selected) and log10

resolution (if selected) in vtk format (allowing plotting in ParaView, for example).

o If you have more than one dataset in protocol.dat (see later) then the files f001_res.dat,

f002_res.dat, f003_res.dat, etc will be created. Similarly a set of _err.dat, _rad.dat
and/or _sen.dat files will be output.

o The output f001_res.dat is made at convergence, however, sometimes it is useful to look at

the resistivity image at various stages in the iterative process. For all iterations prior to the
final iteration a file f001.XXX_res.dat will be output, where XXX is 001, 002, 003, etc for
the first, second, third, etc iterations. The format of this file is the same as f001_res.dat.
If multiple datasets appear in protocol.dat then corresponding output files will be created .
For example, f003.005_res.dat will be the fifth iteration of the inversion of the third dataset
in protocol.dat.

In addition R2 will output:

R2 v2.6 (November 2010) page 4 of 21

o electrodes.dat , which contains the co-ordinates of the electrodes. The values are in three

columns: x,y.

o electrodes.vtk contains the co-ordinates of the electrodes in vtk format. The values are in
three columns: x,y,z (the latter being set to zero). Use this file if you are working with
Paraview to look at the resistivity images. Once you have opened the electrodes.vtk file in
Paraview you select “apply” then you select the “Glyph” icon; this allows you to plot the
electrodes as small spheres (or other objects).

Details of R2.in

Line1: (Char*80) header

where header is a title of up to 80 characters

Line 2: (2 Int, Real, 2 Int) job_type, mesh_type, flux_type, singular_type, res_matrix

where job_type is 0 for forward solution only or 1 for inverse solution; mesh_type is 3 for
triangular mesh or 4 for a regular quadrilateral mesh or 5 for a more generalised quadrilateral
mesh; flux_type is 2.0 for 2D current flow (i.e. line electrodes) or 3.0 (usual mode) for fully 3D
current flow; singular_type is 1 if singularity removal is to be applied (otherwise 0). Note that
singularity removal can only be applied is (a) the boundaries are infinite and (b) the y=0 plane
defines the upper boundary; res_matrix is 1 if a 'sensitivity' matrix is required for the converged
solution. This matrix is not the Jacobian but is the diagonal of [JT WT W J] which gives an idea
of the mesh sensitivity (see equation 5.20 of Binley and Kemna, 2005). One value is stored for
each finite element in the mesh. High values indicate high sensitivity, low values indicate poor
sensitivity. Plot on a log scale. Set res_matrix to 2 if the true resolution matrix is computed for
a converged solution and the diagonal is stored (see equation 5.18 of Binley and Kemna,
2005), note that this calculation is more time consuming than the ‘sensitivity matrix’ option. If
neither sensitivity map or resolution matrix is required then set res_matrix to 0

If mesh_type is 3 then a triangular mesh is to be used. This allows much greater flexibility of
defining geometry but requires creation of a finite element mesh. The file mesh.dat must be
supplied which contains the mesh details including node coordinates and element indices (see details
later).

If (mesh_type = 4) then a regular quadrilateral mesh is to be used and the following are read:

Line 3: (2 Int) numnp_x, numnp_y

where numnp_x is number of nodes in the x direction (horizontal) and numnp_y is the
number of nodes in the y (vertical) direction

 Line 4: (numnp_x Real) xx

where xx is an array containing x coordinates of each of numnp_x node columns

Line 5: (numnp_x Real) topog

where topog is an array containing elevations of each of numnp_x node columns. If
the topography is flat then set topog to zero for all values.

R2 v2.6 (November 2010) page 5 of 21

 Line 6: (numnp_y Real) yy

where yy is an array containing y coordinates of each of numnp_y node rows relative
to the topog array. Set yy(1) to zero and the other values to a positive number.

Else if (mesh_type = 5) then a more generalised quadrilateral mesh is to be used and the following
are read:

Line 7: (2 Int) numnp_x, numnp_y
where numnp_x is number of nodes in the x direction (horizontal) and numnp_y is the
number of nodes in the y (vertical) direction

 Line 8: (numnp_x Real) xx

where xx is an array containing x coordinates of each of numnp_x node columns

 Line 9: (numnp_y Real) yy

where yy is an array containing y coordinates of each of numnp_y node rows for
column 1 in the x direction. Set yy(1) to zero and the other values to a positive
number.

 Repeat Line 9 for all numnnp_x columns.

End if

Note: It is wise to add a carriage returns to break up a long list of input values (in Line 4, 5, 6, 8 and
9, for example). Don’t write more than 20 numbers on each line as the compiler doesn’t like it.

If (mesh_type = 3) then read the following

Line 10: (Real) scale

where scale is a scaling factor for the mesh co-ordinates. This is usually 1.0 but if a
standardised mesh is used, say for a unit circle, then this scaling factor is useful to adjust the
mesh for a specific problem. Set scale=1 if you do not wish to change the coordinates of the
mesh defined in mesh.dat

End if

Line 11: (Int) num_regions

where num_regions is number of resistivity regions that will be specified either as starting condition
for inverse solution or actual model for forward solution. The term “region” has no significance in
the inversion – it is just a means of inputting a non-uniform resistivity as a starting model for
inversion or for forward calculation.

If (num_regions = 0) then read the following

Line 12: (15*Char) file_name

where file_name is the name of the file containing the resistivitities from a previous inversion
(the _res.dat file that had been produced). Note that the file_name must be no more than

R2 v2.6 (November 2010) page 6 of 21

15 characters and there should be no spaces before the file name and no characters in the
line after the file name.

Else

Line 13: (2 Int, Real) elem_1, elem_2, value

where the resistivity value will be assigned for all elements from elem_1 to elem_2
(inclusive). Note that for a quadrilateral mesh the elements are numbered down columns first
(top to bottom) then along rows (left to right).

 Repeat Line 13 for all num_regions

End if

NOTE 1: you must assign all elements a starting value. The number of elements in the mesh is
(numnp_x-1) x (numnp_y-1) for a quadrilateral mesh. All these elements must be assigned a
resistivity. Note also that if you assign an element a value, it will overwrite any previous assignment.

If (job_type = 1. i.e. an inverse solution) then read the following

If (mesh_type = 4 or 5) then read the following

Line 14: (2 Int) patch_size_x, patch_size_y

where patch_size_x and patch_size_y are the parameter block sizes in the x and y
direction, respectively. Note that the number of elements in the x direction must be
perfectly divisible by patch_size_x and the number of elements in the y direction must
be perfectly divisible by patch_size_y otherwise set them both to zero.

If (patch_size_x = 0) and (patch_size_y = 0) then read the following

Line 15: (2 Int) num_param_x, num_param_y

where num_param_x and num_param_y are the number of parameter blocks
in the x and y directions

Line 16: (1+num_param_x Int) npxstart, npx(i), i=1,num_param_x

where npxstart is the column number in the mesh where the parameters start;
npx specifies the number of elements in each parameter block in the x
direction

Line 17: (1+num_param_y Int) npystart, npy(i), i=1,num_param_y

where npystart is the row number in the mesh where the parameters start;
npy specifies the number of elements in each parameter block in the y
direction

End if

 End if

Line 18: (Int) inverse_type

R2 v2.6 (November 2010) page 7 of 21

where inverse_type is 0 for pseudo-Marquardt solution or 1 for regularised solution with
linear filter (usual mode) or 2 for regularised type with quadratic filter or 3 for qualitative
solution or 4 for blocked linear regularised type (see also line 24). Note that the blocking
defined here is only for a quadrilateral mesh – for blocking within a triangular mesh see the
details for preparing mesh.dat later.

 if (inverse_type = 3) then

Line 19: (Int) qual_ratio

where qual_ratio is 0 for qualitative comparison with forward solution, i.e. only when
one observed data set is available, or qual_ratio is 1 if the observed data in
protocol.dat contains a ratio of two datasets

Line 20: (2 Real) rho_min, rho_max

where rho_min and rho_max are the minimum and maximum observed apparent
resistivity to be used

 Else

NOTE: the following line input is different to v2.4 and older versions of R2

Line 21: (2 Int) data_type, reg_mode

where data_type is 0 for true data based inversion or 1 for log data based. Note that
the latter should improve convergence but may not work for internal electrodes (e.g.
borehole type) where the polarity can change due to resistivity distributions
reg_mode is 0 for normal regularisation; or 1 if you want to include regularisation
relative to your starting resistivity (this is whatever you have set in input lines 11 to
13); or 2 if you wish to regularise relative to a previous dataset using the “Difference
inversion” of LaBrecque and Yang (2000). If you select reg_mode=1 then Line 22 will
require a regularisation parameter alpha_s. If you select reg_mode=2 then
protocol.dat must contain an extra column (see below) with the reference dataset. In
addition, your starting model (see Line 12) should be the inverse model for this
reference dataset (i.e. you need to invert the reference dataset before running the
time-lapse inversion). Also note that if you select reg_mode=2 then data_type is
automatically set to 0 irrespective of what was entered in Line 21.

NOTE: the following line input is different to v2.4 and older versions of R2

if ((reg_mode = 0) or (reg_mode = 2)) then

Line 22: (Real, 2 Int, Real) tolerance, max_iterations, error_mod, alpha_aniso

Else

Line 22: (Real, 2 Int, 2 Real) tolerance, max_iterations, error_mod,
alpha_aniso, alpha_s

End if

R2 v2.6 (November 2010) page 8 of 21

where tolerance is desired misfit (usually 1.0); max_iterations is the maximum
number of iterations; error_mod is 0 if you wish to preserve the data weights, 1 or 2 if
you wish the inversion to update the weights as the inversion progresses based on
how good a fit each data point makes. error_mod=2 is recommended. Note that no
weights will be increased. The smoothing factor used in the code (alpha) is searched
for at each iteration. The search is done over a range of steps in alpha, the number
of steps is num_alpha_steps. alpha_aniso is the anisotropy of the smoothing factor,
set alpha_aniso > 1 for smoother horizontal models, alpha_aniso < 1 for smoother
vertical models, or alpha_aniso=1 for normal (isotropic) regularisation. alpha_s is the
regularisation to the starting model (if you set reg_mode = 1 in Line 21). Set alpha_s
to a high value (e.g. 10) to highly penalise any departure from this starting model.
Note that alpha_s will stay fixed – if you set it too high then R2 may not converge.
R2.out will report the value of alpha used to regularise smoothing within the image –
the regularisation relative to a reference model is additional to this. The user may
find setting alpha_s useful as a comparison of inversions from two runs with
difference reference models allows an assessment of the depth of investigation
following the approach of Oldenburg and Li (1999).

Line 23: (4 Real) a_wgt, b_wgt, rho_min, rho_max

where a_wgt and b_wgt are error variance model parameters following:
 var(R) = (a_wgt*a_wgt) + (b_wgt*b_wgt) * (R*R)
where R is the resistance measured.

It is advisable to estimate a_wgt and b_wgt from error checks in the field data (ideally
from reciprocal measurements - not measures of repeatability). Typically for surface
data a_wgt will be about 0.01 ohms and b_wgt will be about 0.02 (roughly equivalent
to 2% error). Note that if you select data_type=1 in Line 21 then although the
resistance data are transformed into log apparent conductivities the a_wgt and b_wgt
parameters should still reflect the variance of the resistance; rho_min and rho_max
are the minimum and maximum observed apparent resistivity to be used for inversion
(use large extremes if you want all data to be used). If data are ignored by R2
because of the apparent resistivity limits then these will be reported individually in
R2.log. Note that the apparent resistivity calculations assume that you have set the
ground surface to Y=0 and that the ground surface is flat. Note also that you can
select to include individual errors for each measurement in the data input file
protocol.dat – to do this a_wgt and b_wgt should be set to 0.0 – protocol.dat will then
require an additional column (see later).

Line 24: (num_param_x Int) param_symbol

If you have specified blocking of parameters (inverse_type = 4 in line 18) so that each
block type is disconnected from other blocks then the blocks are specified by
producing a simple plan of the parameter mesh. You must input for each row of
parameters an integer representing the parameters. This is repeated for each row.
Make sure that you put a space between each integer. As an example say a mesh
with 10 elements in the y direction and 12 elements in the x direction is set to have a
parameter patch size of 2, so in total there are 5 parameters (x) by 6 parameters (y).
If we want to set the bottom two rows of parameters (4 elements) not to be
smoothed along with the top four rows (8 elements) then the following could be
input:

1 1 1 1 1
1 1 1 1 1

R2 v2.6 (November 2010) page 9 of 21

1 1 1 1 1
1 1 1 1 1
2 2 2 2 2
2 2 2 2 2

Repeat line 24 for all num_param_y

End if

End if

Line 25: (Int) num_electrodes

where num_electrodes is number of electrodes

If (mesh_type = 3) then

Line 26: (2 Int) j, node

where j is the electrode number and node is the node number in the finite element mesh

Else

Line 27: (3 Int) j, column, row

where j is the electrode number, column is the column index for the node the finite element
mesh and row is the row index for the node in the finite element mesh. The column value
must be in the range 1 to numnp_x and the row value must be in the range 1 to numnp_y.
Both values must be integer values.

End If

Repeat Line 27 for all num_electrodes

END OF INPUT FOR R2.in

Details of protocol.dat

protocol.dat contains measurement schedule (and data for inverse if selected)

Line 1: (Int) num_ind_meas

where num_ind_meas is number of measurements to follow in file

If (job_type = 1) then

Line 2: (5 Int, 3 Real) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k), v_i_ratio, v_i_ratio_0,
data_sd

where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode
number for the P+ electrode; elec(2,k) is the electrode number for the P- electrode;
elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode number for
the C- electrode; v_i_ratio is measured resistance value (or ratio of two measured values if
inverse_type=2 and qual_ratio=1 in R2.in); v_i_ratio_0 is the resistance data for background

R2 v2.6 (November 2010) page 10 of 21

case (only read if reg_mode=2); data_sd is data standard deviation (only read if a_wgt and
b_wgt in line 23 of R2.in are both zero)

Repeat Line 2 for all num_ind_meas

Else

Line 3: (5 Int) j, , elec(1,k), elec(2,k), elec(3,k), elec(4,k)

where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode
number for the P+ electrode; elec(2,k) is the electrode number for the P- electrode;
elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode number for
the C- electrode

Repeat Line 3 for all num_ind_meas

End if

You can add as many datasets to the file protocol.dat. Just concatenate the datasets into one file.
R2 will continue to read and process data using the settings defined in R2.in
END OF INPUT FOR protocol.dat

Details of mesh.dat

If you are working with a triangular mesh then you must create the mesh and store details of the
geometry of the mesh in a file mesh.dat GMS and other similar packages have mesh generation
tools that are suitable for this purpose. In GMS a mesh can be created and ‘materials’ defined,
allowing some zoning of the mesh (to permit blocking at interfaces). Also, a finer mesh can be
created to be used as the baseline mesh with a coarser mesh to define the parameters. The
simplest mesh consists of an equal number of parameters and elements and one zone. More
complex arrangements allow for grouping of elements into parameters and multiple zones.
Regularisation is not applied at the interface of zones.

Line 1: (2 Int) numel, numnp

Where numel is the number of triangle elements and numnp is the number of nodes.

Line 2: (6 Int) n, index(1,n), index(2,n), index(3,n), param(n), zone(n)

Where n is the element number; index(1,n), index(2,n) and index(3,n) are the node numbers of the
element, numbered in a counter-clockwise direction; param(n) is the parameter number of the
element (to make every element a parameter then make this value equal to the element number);
zone(n) is the zone number for element n. To have one zone make zone(n) equal to 1 for all
elements. Zones must be connected elements. Parameters cannot occupy more than one zone.
Note also, to make an parameter fixed to the starting resistivity, set param(n) to zero.

Repeat line 2 for all numel elements.

Line 3: (Int, 2 Real) n, x(n), y(n)

Where n is the node number; x(n), y(n) are the coordinates of node n.

Repeat line 3 for all numnp nodes.
END OF INPUT FOR mesh.dat

R2 v2.6 (November 2010) page 11 of 21

Examples

The folder “Examples” contains a number of worked examples of R2 to illustrate how to setup input
files and work with model output.

Surface electrode array 1
The subfolder “Examples/Surface_1/dpdp” contains an example synthetic model of a surface
electrode array using a dipole-dipole measurement scheme. The example is taken from Binley and
Kemna (2005). For this problem 25 electrodes are positioned at 2m spacing on a flat surface of a
half space. The electrodes are numbered 1 to 25 from left to right. A forward model is setup to
determine the measured transfer resistances for a dipole-dipole scheme with 117 measurements.
The resistivity model is shown in Figure 1. A small target with resistivity 10 Ωm lies within a 100
Ωm half space: positioned vertically between depths 1m and 4m and horizontally between 14m and
16m.

0 5 10 15 20 25 30 35 40 45
-8

-4

0

0 5 10 15 20 25 30 35 40 45
-8

-4

0

Distance (m)

Depth
(m) Electrode

10 Ωm
100 Ωm

Figure 1: Definition of synthetic model for surface array 1 problem

The subfolder “Examples/Surface_1/dpdp/Forward” contains the protocol.dat file for the forward
problem. Also contained in the folder is the file R2.in which defines the geometry and resistivity
model. Since the model is a half space the finite element mesh must extend significantly away from
the region of investigation (horizontally and vertically downwards). The mesh developed consists of
225 node columns and 49 node rows (i.e. 11025 nodes, 10752 elements). The file R2.in shows how
the mesh is designed to get progressively coarser away from the region of study. Note that the co-
ordinates of the mesh have been set so that electrode 1 is at (0,0) for this problem. In the mesh
electrode 1 is located at node column 17 (i.e. there are 16 elements to the left of the electrode
array to represent an infinite boundary condition to the left. For this example 8 elements are
placed between electrodes and so node 2 is at node column 25, node 3 is at column 33, etc. Since
the electrodes are located on the ground surface the row node for all electrodes is 1. All the
electrode positions are assigned in R2.in. The file also assigns the resistivity for all elements. For
this problem it is done by defining the resistivity of 9 congruent blocks of elements. First all
elements in the mesh are set to 100 Ωm and then 8 columns of vertically adjacent elements are
defined to set the 10 Ωm anomaly (remember that the elements are numbered vertically then
horizontally).

When R2 is run the output files are:

R2.out, which contains the main log of execution
electrodes.dat, which contains the electrode co-ordinates
R2_forward.dat, which contains the forward model, i.e. the 117 transfer resistances. Note
that the apparent resistivity for each of the 117 measurements is also stored.
forward_model.dat, which contains the co-ordinates of the centroid of each finite element in
the mesh, the resistivity of each finite element along with the logarithm (to base 10) of the
resistivity. This file is useful for checking if the resistivities were defined correctly in R2.in

In Binley and Kemna (2005) the same forward model is presented in pseudo section format.

The subfolder “Surface_1/dpdp/Inverse” contains files for running the inversion of the transfer
resistances determined above. For this a uniform starting resistivity of 100 Ωm is defined in the file

R2 v2.6 (November 2010) page 12 of 21

R2.in. The ‘data’ to be inverted is stored in file protocol.dat: here the values are simply the transfer
resistances that appeared in the R2_forward.dat file described earlier.

For the inverse problem we have used a patch_size of 4 in both x and y directions, i.e. each inverse
parameter is a 4 by 4 block of finite elements.

When R2 is run in this case the output files are:

R2.out, which contains the main log of execution;
electrodes.dat, which contains the electrode co-ordinates;
f001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite
element (in the entire mesh – not just the region of interest);
f001_err.dat, which contains the misfit for each of the 117 measurements;
f001_sen.dat, which contains the sensitivity map computed using equation 5.20 in Binley and
Kemna (2005);
f001.001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite
element after the first iteration. Note that the inversion converged after 2 iterations for this
problem and so this is the only intermediate solution.

Figure 2 shows the results of the inversion (compare with Fig 5.8 of Binley and Kemna(2005)). This
is an image map of the results in f001_res.dat (x and y in columns 1 and 2 and logarithm of
resistivity in column 4). Note that only the region within the electrode array and to a depth of 8m
has been plotted.

In Figure 3 the sensitivity map is shown (res_matrix in line 2 of R2.in is set to 1). The values are
computed with the equation 5.20 of Binley and Kemna (2005). High values indicate areas of high
measurement sensitivity.

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Figure 2: Inverse model for surface array 1 problem with dp-dp array

0 5 10 15 20 25 30 35 40 45
-8

-4

0

-2 -1 0 1 2 3
Log10 (sensitivity s)

Distance (m)

Depth
(m)

Figure 3: Sensitivity map for inverse model for surface array 1 problem with dp-dp array

Had the problem been run with res_matrix in line 2 of R2.in set to 2 then the diagonal of the
resolution matrix would have been computed. This is useful for comparing models and
measurement schemes. In Figure 4 the map of the resolution matrix diagonal is shown. Values

R2 v2.6 (November 2010) page 13 of 21

should be ideally equal to 1 (logarithm equal to 0) – values less than this indicate the effect of
smoothing on the parameter value (influence of adjacent parameter values). The map of the
diagonal of the resolution matrix is very useful for determining a suitable filter for displaying results.

-3.5 -2.5 -1.5 -0.5

0 5 10 15 20 25 30 35 40 45
-8

-4

0

Log10 (diagonal of resolution matrix)

Distance (m)

Depth
(m)

Figure 4: Diagonal of resolution matrix for inverse model for surface array 1 problem with dp-dp

array

The subfolder “Surface_1/Wenner/Forward” contains files for running a forward model for the same
problem but using a Wenner configuration (see figure 5.7 of Binley and Kemna(2005) for the
pseudo section. The subfolder “Surface_1/Wenner/Inverse” contains the files for running the
inverse model. Figure 5 shows the resulting model. Figure 6 shows the diagonal of the resolution
matrix for this solution, illustrating a weaker resolution in comparison to the dipole-dipole array (c.f.
Figure 4),

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Figure 5: Inverse model for surface array 1 problem with Wenner array

0 5 10 15 20 25 30 35 40 45
-8

-4

0

-3.5 -2.5 -1.5 -0.5
Log10 (diagonal of resolution matrix)

Distance (m)

Depth
(m)

Figure 6: Diagonal of resolution matrix for inverse model for surface array 1 problem with Wenner

array

Surface electrode array 2
The subfolder “Examples/Surface_2/dpdp” contains an example similar to the previous case but with
varying surface topography. Here the ground surface slopes from 0m at electrode 1 to 4.8m at
electrode 25 (see Figure 7). The file R2.in is now different for the forward and inverse model runs
through the addition of topography data. Figure 8 shows the inverse solution for this case.

R2 v2.6 (November 2010) page 14 of 21

0 5 10 15 20 25 30 35 40 45
-8

-4

0

4

Electrode

Distance (m)

Depth
(m)

10 Ωm
100 Ωm

Figure 7: Definition of synthetic model for surface array 2 problem

0 5 10 15 20 25 30 35 40 45
-8

-4

0

4

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Figure 8: Inverse model for surface array 2 problem with dipole-dipole array

Surface electrode array 3
Occasionally it is useful to fix resistivity values within the mesh. This is particularly useful for time
lapse imaging where we wish to focus on changes within a particular part of the mesh. In R2 this
can be achieved with a quadrilateral mesh by defining left, right, upper and lower limits of the
parameter zone (see Line 16 and line 17 definitions for R2.in). To illustrate this we invert data from
a previous example but constrain the parameter zone to a smaller region of the mesh.

The subfolder “Examples/Surface_3/dpdp” contains an example similar to the Surface array 1
example but this time the inverse model is defined so that not all elements are parameters. The
forward model used for generating the data file (protocol.dat) is that from Figure 1, i.e. in
“Examples/Surface_1/dpdp/Forward”.

For this example we use a patch_size of zero in the x and y directions and then define the location
of the zone to be parameterised. In R2.in a patch of 4 elements per parameter is defined in the
horizontal direction starting at element 1. All elements are grouped into parameters in the
horizontal and thus there are 56 patches of 4 elements declared (a total of 224 elements). In the
vertical we define the parameter zone to be from 1m to 6m depth and a patch size of 2 elements is
used (10 parameters in total corresponding to the 20 elements). The starting element for the
parameterisation in the vertical is 5 (since the first four elements cover the first 1m in this case).
Note that the resistivity of any element that is not declared to contribute to a parameter remains
unchanged from the starting value (in this case 100 Ωm).

Figure 9 shows the resultant inverse model. The sharp boundaries (in the vertical) at 1m and 6m
are a result of the constrained parameter zone (there is no smoothing over the boundaries).

Note that if you restrict the parameter zone too much then convergence of the solution may be
problematic (since you will be reducing the degrees of freedom of the inverse solution).

R2 v2.6 (November 2010) page 15 of 21

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Figure 9: Inverse model for surface array 3 problem

Surface electrode array 4
The subfolder “Examples/Surface_4/dpdp” contains an example similar to the Surface array 1
example but this time the smoothing is set to be anisotropic. For this case the smoothing is
exaggerated in the vertical by setting alpha_aniso in Line 22 of R2.in to 0.1 (10 times more
smoothing in the vertical). Figure 10 shows the resultant inversion (c.f. Figure 2 with isotropic
smoothing).

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Figure 10: Inverse model for surface array 4 problem

Surface electrode array 5
The examples so far have used a simple quadrilateral mesh definition. For the surface array 2
example the mesh was distorted by changing the topography of the upper surface of the mesh. In
this example we illustrate how to change the mesh in a more flexible manner. By setting
mesh_type to 5 in Line 2 of R2.in we can specify the row coordinates for every column of the
mesh. This requires more input information than the previous examples but gives much greater
flexibility.

The subfolder “Examples/Surface_5/dpdp/Forward” contains a forward modelling example similar to
the Surface array 1 example but in this case a zone of low resistivity lies just below the ground
surface and varies in thickness from 0.5m at electrode 1 to 1m at electrode 25. In addition, the
electrodes are located in this example at the bottom of this conductive zone. Such a model may be
representative of electrical imaging using electrodes placed at the bed of a stream (the conductive
zone representing the stream).

To setup this forward model the 49 row coordinates are defined for all 225 column positions. In
addition, R2.in must also contain the definition of more groups of elements than before to represent
the conductive zone (remember that the zones are defined as groups of congruent elements and
since the elements are numbered in the vertical then we must define 224 such groups for this
problem, in addition to the rest of the region, i.e. 225 groups in all).

R2 v2.6 (November 2010) page 16 of 21

0 5 10 15 20 25 30 35 40 45
-8

-4

0

Distance (m)

Depth
(m) Electrode 10 Ωm

100 Ωm

Figure 11: Forward model for surface array 5 problem

Surface electrode array 6
The subfolder “Examples/Surface_5” contains three examples illustrating the use of a reference
resistivity model. The examples use the dipole-dipole forward model from Surface electrode array 1
but invert three difference cases with reg_mode set to 1 (see line 21 of R2.in).

In case_01 we set αs to 10 with a resistivity background (starting model or reference model) equal
to a uniform ρback=100Ωm. The results are shown in Figure 12a. The result is similar to that shown
in Figure 2 (no regularisation relative to a reference model).

In case_02 we set αs to 50 with a uniform ρback=100Ωm. The results are shown in Figure 12b. The
target recovery is now weaker as the inversion applies more penalty to deviation from 100Ωm.

In case_03 we set αs to 10 with a uniform ρback=50Ωm. The results are shown in Figure 12c.
Recalling that the background resistivity in the forward model is 100Ωm, Figure 12c illustrates the
zone over which the measurements have sensitivity – the lower left and right regions are clearly not
influenced by the measurements in this case (which is consistent with the resolution matrix in Figure
4).

0 5 10 15 20 25 30 35 40 45
-8

-4

0

0 5 10 15 20 25 30 35 40 45
-8

-4

0

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth
(m)

Distance (m)

Depth
(m)

Distance (m)

Depth
(m)

(a)

(b)

(c)

Figure 12: Surface array 6 – regularising relative to a reference resistivity model.

(a) αs=10, ρback=100Ωm. (b) αs=50, ρback=100Ωm. (c) αs=10, ρback=50Ωm.

R2 v2.6 (November 2010) page 17 of 21

We can use these results to assess the depth of investigation (DoI), following the method of
Oldenburg and Li (1999). We can compute the value:

rr mm
yxmyxmyxR

,2,1

21),(),(),(
−
−

=

Where m1 are the inversion results in Figure 12a (in log units) using 100Ωm as a reference and m2
are the inversion results in Figure 12c (in log units) using 50Ωm then, m1,r = log10(100) and m2,r =
log10(50). Figure 13 shows the variation of R. Oldenburg and Li (1999) suggest a reasonable value
of R = 0.1 or 0.2 as a suitable depth of investigation. Figure 13 shows a contour of R = 0.2 to
illustrate this.

0 5 10 15 20 25 30 35 40 45
-8

-4

0

0 0.2 0.4 0.6 0.8 1

Depth of investigation

Distance (m)

Depth
(m)

Figure 13: Depth of investigation for Surface array 6 problem.

Cross borehole array
The subfolder “Examples\Xbh” contains forward and inverse models for two cross borehole
examples illustrated in Binley and Kemna (2005). The first case considered here is included in
“Examples\Xbh\8m_skip7”. In this case measurements are made between two boreholes 8m apart,
as illustrated in Figure 13. As in previous examples a zone with resistivity 10 Ωm is embedded in
the 100 Ωm half space. The measurement scheme used is a “skip 7”: dipole – dipole with 7
electrode in between each current and potential electrode pair (see the protocol.dat file).

The forward model input files are included in “Examples\Xbh\8m_skip7\forward” and the inverse
model files are in “Examples\Xbh\8m_skip7\inverse”. Figure 14 shows the output of the inverse
solution using the forward model as “data”.

The second cross borehole case is for two boreholes 15m apart, as illustrated in Figure 15. The
forward model input files are included in “Examples\Xbh\15m_skip7\forward” and the inverse model
files are in “Examples\Xbh\15m_skip7\inverse”. Figure 16 shows the output of the inverse solution
using the forward model as “data”. The effect of increased spacing of the boreholes on sensitivity
of the measurements can be seen by comparing Figures 16 and 14.

R2 v2.6 (November 2010) page 18 of 21

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

Depth
(m)

Distance (m)

Electrode

10 Ωm

100 Ωm

Ground surface

Figure 13: Forward model definition for cross borehole case 1

0 2 4 6 8

-14

-12

-10

-8

-6

-4

-2

0

Depth
(m)

Distance (m)

1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Figure 14: Inverse model for cross borehole case 1

R2 v2.6 (November 2010) page 19 of 21

0 2 4 6 8 10 12 14

-14

-12

-10

-8

-6

-4

-2

0

Ground surface

Depth
(m)

Electrode

10 Ωm

100 Ωm

Distance (m)

Figure 15: Forward model definition for cross borehole case 2

Depth
(m)

Distance (m)

1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

0 2 4 6 8 10 12 14

-14

-12

-10

-8

-6

-4

-2

0

Figure 16: Inverse model for cross borehole case 2

R2 v2.6 (November 2010) page 20 of 21

Common User Errors

Below is a list of some common user errors that I have encountered. This may be useful for new
users.

A common mistake is for a new user to go straight into trying to run an inverse solution without
getting a good feeling for the model that is being used. New (and old) users working on new
problems should first try run a forward model for a uniform resistivity. This will help sort out any
problems with the definition of the mesh, etc. It will also be useful in understanding the quality of
the forward model and help judge this against the quality of the data.

If you can, run the code from the command line. You will need to run CMD in Windows and create
a DOS window, then move to the correct folder and then type R2. Doing it like this help see any
errors if the program crashes unexpectedly because of incorrect input.

In the example input files provided there are comments at the end of most lines in the form
“<< comment” . Note that these are always at the end of a line. You cannot have these appearing
on their own in a line. If you do then R2 will try read this comment when it is expecting numerical
input and simply crash.

The mesh is based on elements and nodes. Lines 3 to 9 are based on nodes, whereas Line 13 is
based on elements. It is important to understand the difference and not mix the two.

On Line 22, specifying a tolerance of 1.0 means that you are happy that you have estimated your
errors correctly (Line 23). Don’t just use the a_wgt and b_wgt values in the example files – spend
time to understand the likely errors in your measurements and model.

Setting data_type to 1 in Line 22 means that the data you input will be log transformed, not that
you have to supply logged data. Note that you do not need to worry about the sign (polarity) of the
data if you select the log data type – R2 will deal with this.

Setting the minimum and maximum apparent resistivity (Line 23) is only valid if you have a flat
surface and an infinite half space problem, otherwise the geometric factors that R2 will compute
will be incorrect.

For a quadrilateral mesh the electrode positions are defined by their column and row positions in
the mesh (Line 27). These are not the co-ordinates of the electrodes but their position in the mesh,

In the definition of the input files, each line has been defined in terms of the type of numbers that
are required. For example, (Real, 2 Int, 2 Real) means one real number, followed by two integers,
followed by two reals. You can substitute integers for reals but bit the other way round. So if the
code is expecting an integer and your line entry has 1.3, for example, then the code will crash.

Note that the data in protocol.dat should be provided in transfer resistances, NOT apparent
resistivities. Also note that the polarity should be retained in the data. It is very wise to check the
polarity of your measurements – you can do this by computing the geometric factor for your
measurement configuration (provided topographic and non-infinite boundaries are not significant).
If you don’t know how to compute the geometric factors then you should run a forward model with
R2 for a uniform half space and compare the computed polarities with those in your data. For a
surface electrode array your data should be the same polarity as the model, otherwise the
measurements will not be included in the inversion. For electrodes not on the surface the polarity
can change as the resistivity structure changes in the inversion.

R2 v2.6 (November 2010) page 21 of 21

References

Binley, A. and A. Kemna, 2005, Electrical Methods, In: Hydrogeophysics by Rubin and Hubbard
(Eds.), 129-156, Springer

LaBrecque, D.J. and X. Yang, 2000, Difference inversion of ERT data: A fast inversion method for 3-
D in-situ monitoring, Proc. SAGEEP 2000, 907-914.

Oldenburg, D.W. and Y. Li, 1999, Estimating depth of investigation in dc resistivity and IP surveys,
Geophysics, 64(2), 403-416.

If you make use of R2 then please contact the author (a.binley@lancaster.ac.uk) so that
you can be added to a mailing list for future updates, fixes, etc.

For more information, including example files contact:

Andrew Binley
Lancaster Environment Centre

Lancaster University
Lancaster LA1 4YQ, UK

Email: a.binley@lancaster.ac.uk

