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Changes to R2 from v2.5   
 
Version 1.3a now outputs results (resistivity, log10 resistivity, sensitivity map, electrode co-
ordinates) in vtk format, allowing easy visualisation with ParaView (which can be downloaded from 
http://www.paraview.org/paraview/resources/software.html). See also 
http://www.vtk.org/Wiki/The_ParaView_Tutorial for a tutorial on ParaView. 
 
This readme now contains a list of common user errors, which may be helpful for new users. 
 
A 64bit version, R2(x64).exe, is provided in the package, along with the 32bit version (R2.exe). 

 
Computer requirements for R2 v2.6   

 
In this release two versions have been compiled for the Windows environment, one of which account 
for processor-specific architecture.  Users requiring a version compiled for other processors should 
contact the author. 
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Introduction to R2 v2.6 
  
NOTE 1: all input files should be prepared with a text editor.  [I prefer to use TextPad 
(www.textpad.com) because it allows much greater editing facilities although any text editor will 
work].  It is important that you do not include tabs in the files. These are often inserted if you copy 
and paste from Excel, for example.  You should convert these tabs to spaces (TextPad will allow you 
to set this up to happen automatically).    
 
NOTE 2: You will be able to run R2 by double clicking the executable.  However, if the program 
stops abruptly (for example, due to an error in the input file or if you are trying to run an executable 
compiled for a different processor architecture) then you will not see any error message on the 
screen since the window will disappear.  Therefore, it is advisable to run R2 from the Command 
Prompt (just run CMD from the Start Menu – you may need to move your working directory and run 
R2 from there). 
 
R2 is a forward/inverse solution for 3D or 2D current flow in a quadrilateral or triangular mesh.  R2 
requires at least two data files: R2.in and protocol.dat.  If a triangular mesh is used then an 
additional input file – mesh.dat – is required. 
 
R2.in contains information on the geometry of the problem to be solved.  protocol.dat contains the 
measurement  
 
The mesh is made up of a set of elements.  Parameters (for the inverse solution) are made up of one 
or more elements.  Electrodes are specified at node points. These are the corners of the elements. 
The boundary conditions along all four boundaries of the mesh are Neumann conditions (zero flux) 
and therefore if you are investigating a half space you must extend left, right and lower boundaries 
of the mesh to some distance away from the area of investigation (typically 10 to 20 times the 
distance). 
 
The mesh can be made up of either quadrilateral elements or triangular elements.   
 
The current version will work with the following problem size limits: 
 

o Quadrilateral finite element mesh size no larger than 500 nodes in the horizontal or vertical 
directions; 

o The total number of nodes in the mesh is not greater than 40,000; 
o The total number of elements in the mesh is not greater than 30,000; 
o No more than 200 unique electrode sites; 
o No more than 5000 measurements; 
o No more than 30,000 parameters 

 
For a version to work on a larger problem contact the author. 
 

 
Input specification for R2 v2.6   

 
R2 will output a number of files:  
  

o R2.out which will contain main log of execution. 
 
o electrodes.dat contains the coordinates of the electrodes. 

 
If the problem to be run is a forward model then R2 will output: 
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o R2_forward.dat which will contain the forward model for the electrode configuration in 

protocol.dat  The format of R2_forward.dat is the same as protocol.dat but with 2 extra 
columns: the first contains the calculated resistances and the second contains the calculated 
apparent resistivities.   

 
o forward_model.dat which will contain the resistivity distribution for your forward model 

(i.e. what you specified in the input for R2).  Note that the format of these will be the same 
as described below for inverse mode. 

 
o forward_model.vtk as above but vtk format (allowing plotting in ParaView, for example). 

 
If the problem to be run is an inverse model then R2 will output: 
 

o f001_res.dat which will contain the resistivity result of the inverse solution.  f001_res.dat 
will contain four columns: x, y, resis, log10(resis), where x,y are coordinates at centroid of 
each element and resis is the resistivity in that element and log10(resis) is log10 of the 
resistivity value.  The format is setup to work directly with Surfer. 

 
o f001_err.dat will contain nine columns.  In the first column is the normalised data misfit, 

the second column contains the observed data recorded as an apparent resistivity, the third 
column contains the equivalent apparent resistivities for the computed model, the fourth 
column shows the original data weight (i.e. data standard deviation in same units as data), 
the fifth column is the final data weight, the fifth columns shows a "1" if any weights have 
been changed during the inversion, otherwise a "0" will appear, the sixth to ninth columns 
show the electrode numbers. 

 
o if you select resolution matrix calculation then f001_rad.dat  will contain the diagonal of the 

resolution matrix for all elements.  A value close to 1 indicates that the parameter for that 
element can be resolved perfectly, a value close to 0 indicates that the parameter cannot be 
resolved at all. The format is the same as f001_res.dat. 

 
o if you select sensitivity map calculation then f001_sen.dat which will contain the diagonal of 

the matrix [JT WT W J] which gives an idea of the mesh sensitivity coverage.  You will get a 
value for all elements.  High values indicate high sensitivity to data, low values indicate poor 
sensitivity.  Plot on a log scale. The format is the same as f001_res.dat. 

 
o f001_res.vtk will contain resistivity, log10 resistivity, log10 sensitivity (if selected) and log10 

resolution (if selected) in vtk format (allowing plotting in ParaView, for example). 
 
o If you have more than one dataset in protocol.dat (see later) then the files f001_res.dat, 

f002_res.dat, f003_res.dat, etc will be created.  Similarly a set of _err.dat, _rad.dat 
and/or _sen.dat files will be output. 

 
o The output f001_res.dat is made at convergence, however, sometimes it is useful to look at 

the resistivity image at various stages in the iterative process.  For all iterations prior to the 
final iteration a file f001.XXX_res.dat will be output, where XXX is 001, 002, 003, etc for 
the first, second, third, etc iterations.  The format of this file is the same as f001_res.dat.  
If multiple datasets appear in protocol.dat then corresponding output files will be created   .  
For example, f003.005_res.dat will be the fifth iteration of the inversion of the third dataset 
in protocol.dat. 

 
 
In addition R2 will output: 
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o electrodes.dat , which contains the co-ordinates of the electrodes.  The values are in three 

columns: x,y.  
 

o electrodes.vtk contains the co-ordinates of the electrodes in vtk format.  The values are in 
three columns: x,y,z (the latter being set to zero).  Use this file if you are working with 
Paraview to look at the resistivity images.  Once you have opened the electrodes.vtk file in 
Paraview you select “apply” then you select the “Glyph” icon; this allows you to plot the 
electrodes as small spheres (or other objects). 

 
 
Details of R2.in 
 
Line1: (Char*80) header 
 

where header is a title of up to 80 characters 
 
Line 2: (2 Int, Real, 2 Int) job_type, mesh_type, flux_type, singular_type, res_matrix 
 

where job_type is 0 for forward solution only or 1 for inverse solution; mesh_type is 3 for 
triangular mesh or 4 for a regular quadrilateral mesh or 5 for a more generalised quadrilateral 
mesh; flux_type is 2.0 for 2D current flow (i.e. line electrodes) or 3.0 (usual mode) for fully 3D 
current flow; singular_type is 1 if singularity removal is to be applied (otherwise 0). Note that 
singularity removal can only be applied is (a) the boundaries are infinite and (b) the y=0 plane 
defines the upper boundary; res_matrix is 1 if a 'sensitivity' matrix is required for the converged 
solution. This matrix is not the Jacobian but is the diagonal of [JT WT W J]  which gives an idea 
of the mesh sensitivity (see equation 5.20 of Binley and Kemna, 2005).  One value is stored for 
each finite element in the mesh.  High values indicate high sensitivity, low values indicate poor 
sensitivity.  Plot on a log scale.  Set res_matrix to 2 if the true resolution matrix is computed for 
a converged solution and the diagonal is stored (see equation 5.18 of Binley and Kemna, 
2005), note that this calculation is more time consuming than the ‘sensitivity matrix’ option.  If 
neither sensitivity map or resolution matrix is required then set res_matrix to 0 

 
If mesh_type is 3 then a triangular mesh is to be used.  This allows much greater flexibility of 
defining geometry but requires creation of a finite element mesh.  The file mesh.dat must be 
supplied which contains the mesh details including node coordinates and element indices (see details 
later). 
  
If (mesh_type = 4) then a regular quadrilateral mesh is to be used and the following are read: 
 

Line 3: (2 Int) numnp_x, numnp_y 
 

where numnp_x is number of nodes in the x direction (horizontal) and numnp_y is the 
number of nodes in the y (vertical) direction 

 
    Line 4: (numnp_x Real) xx 

 
where xx is an array containing x coordinates of each of numnp_x node columns 

 
Line 5: (numnp_x Real) topog 

 
where topog is an array containing elevations of each of numnp_x node columns.  If 
the topography is flat then set topog to zero for all values. 
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    Line 6: (numnp_y Real) yy 
      

where yy is an array containing y coordinates of each of numnp_y node rows relative 
to the topog array.  Set yy(1) to zero and the other values to a positive number. 

 
Else if (mesh_type = 5) then a more generalised quadrilateral mesh is to be used and the following 
are read: 
 

Line 7: (2 Int) numnp_x, numnp_y 
where numnp_x is number of nodes in the x direction (horizontal) and numnp_y is the 
number of nodes in the y (vertical) direction 

 
    Line 8: (numnp_x Real) xx 

 
where xx is an array containing x coordinates of each of numnp_x node columns 

 
 
    Line 9: (numnp_y Real) yy 
      

where yy is an array containing y coordinates of each of numnp_y node rows for 
column 1 in the x direction. Set yy(1) to zero and the other values to a positive 
number. 

  
 Repeat Line 9 for all numnnp_x columns. 
 
End if 
 
Note: It is wise to add a carriage returns to break up a long list of input values (in Line 4, 5, 6, 8 and 
9, for example).  Don’t write more than 20 numbers on each line as the compiler doesn’t like it. 
 
If (mesh_type = 3) then read the following 
 

Line 10: (Real) scale 
 
where scale is a scaling factor for the mesh co-ordinates.  This is usually 1.0 but if a 
standardised mesh is used, say for a unit circle, then this scaling factor is useful to adjust the 
mesh for a specific problem.  Set scale=1 if you do not wish to change the coordinates of the 
mesh defined in mesh.dat 

 
End if 
 
Line 11: (Int) num_regions 
 
where num_regions is number of resistivity regions that will be specified either as starting condition 
for inverse solution or actual model for forward solution.  The term “region” has no significance in 
the inversion – it is just a means of inputting a non-uniform resistivity as a starting model for 
inversion or for forward calculation. 
 
If (num_regions = 0) then read the following 
 

Line 12: (15*Char) file_name 
 
where file_name is the name of the file containing the resistivitities from a previous inversion 
(the _res.dat file that had been produced).  Note that the file_name must be no more than 



R2 v2.6 (November 2010)  page 6 of 21 

15 characters and there should be no spaces before the file name and no characters in the 
line after the file name. 

 
Else 
 

Line 13: (2 Int, Real) elem_1, elem_2, value 
  
where the resistivity value will be assigned for all elements from elem_1 to elem_2 
(inclusive). Note that for a quadrilateral mesh the elements are numbered down columns first 
(top to bottom) then along rows (left to right). 

 
     Repeat Line 13 for all num_regions 
 
End if 
 
NOTE 1: you must assign all elements a starting value.  The number of elements in the mesh is 
(numnp_x-1) x (numnp_y-1) for a quadrilateral mesh.  All these elements must be assigned a 
resistivity.  Note also that if you assign an element a value, it will overwrite any previous assignment. 
 
If (job_type = 1. i.e. an inverse solution) then read the following 
 

If (mesh_type = 4 or 5) then read the following 
 

Line 14: (2 Int) patch_size_x, patch_size_y 
 
where patch_size_x and patch_size_y are the parameter block sizes in the x and y 
direction, respectively.  Note that the number of elements in the x direction must be 
perfectly divisible by patch_size_x and the number of elements in the y direction must 
be perfectly divisible by patch_size_y otherwise set them both to zero. 

 
If (patch_size_x = 0) and (patch_size_y = 0) then read the following 

 
Line 15:  (2 Int)  num_param_x, num_param_y 
 
where num_param_x and num_param_y are the number of parameter blocks 
in the x and y directions 
 
Line 16:  (1+num_param_x Int) npxstart,  npx(i), i=1,num_param_x 
 
where npxstart is the column number in the mesh where the parameters start; 
npx specifies the number of elements in each parameter block in the x 
direction 
 
Line 17:  (1+num_param_y Int)  npystart, npy(i), i=1,num_param_y 
 
where npystart is the row number in the mesh where the parameters start; 
npy specifies the number of elements in each parameter block in the y 
direction 
 

End if 
 
    End if  

 
Line 18: (Int) inverse_type 
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where inverse_type is 0 for pseudo-Marquardt solution or 1 for regularised solution with 
linear filter (usual mode) or 2 for regularised type with quadratic filter or 3 for qualitative 
solution or 4 for blocked linear regularised type (see also line 24). Note that the blocking 
defined here is only for a quadrilateral mesh – for blocking within a triangular mesh see the 
details for preparing mesh.dat later.  

 
     if (inverse_type = 3 ) then 
 

Line 19: (Int) qual_ratio 
 
where qual_ratio is 0 for qualitative comparison with forward solution, i.e. only when 
one observed data set is available, or qual_ratio is 1 if the observed data in 
protocol.dat contains a ratio of two datasets 

 
Line 20: (2 Real) rho_min, rho_max 
 
where rho_min and rho_max are the minimum and maximum observed apparent 
resistivity to be used 

         
     Else  
 

NOTE: the following line input is different to v2.4 and older versions of R2  

Line 21:  (2 Int)  data_type, reg_mode 
 
where data_type is 0 for true data based inversion or 1 for log data based.  Note that 
the latter should improve convergence but may not work for internal electrodes (e.g. 
borehole type) where the polarity can change due to resistivity distributions  
reg_mode is 0 for normal regularisation; or 1 if you want to include regularisation 
relative to your starting resistivity (this is whatever you have set in input lines 11 to 
13); or 2 if you wish to regularise relative to a previous dataset using the “Difference 
inversion” of LaBrecque and Yang (2000). If you select reg_mode=1 then Line 22 will 
require a regularisation parameter alpha_s. If you select reg_mode=2 then 
protocol.dat must contain an extra column (see below) with the reference dataset. In 
addition, your starting model (see Line 12) should be the inverse model for this 
reference dataset (i.e. you need to invert the reference dataset before running the 
time-lapse inversion).  Also note that if you select reg_mode=2 then data_type is 
automatically set to 0 irrespective of what was entered in Line 21. 

 
NOTE: the following line input is different to v2.4 and older versions of R2  

 
if ((reg_mode = 0) or (reg_mode = 2)) then 
 

Line 22: (Real, 2 Int, Real) tolerance, max_iterations, error_mod, alpha_aniso 
 
Else 
 

Line 22: (Real, 2 Int, 2 Real) tolerance, max_iterations, error_mod, 
alpha_aniso, alpha_s 

 
End if 
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where tolerance is desired misfit (usually 1.0); max_iterations is the maximum 
number of iterations; error_mod is 0 if you wish to preserve the data weights, 1 or 2 if 
you wish the inversion to update the weights as the inversion progresses based on 
how good a fit each data point makes.  error_mod=2 is recommended.  Note that no 
weights will be increased. The smoothing factor used in the code (alpha) is searched 
for at each iteration.  The search is done over a range of steps in alpha, the number 
of steps is num_alpha_steps.  alpha_aniso is the anisotropy of the smoothing factor, 
set alpha_aniso > 1 for smoother horizontal models, alpha_aniso < 1 for smoother 
vertical models, or alpha_aniso=1 for  normal (isotropic) regularisation. alpha_s is the 
regularisation to the starting model (if you set reg_mode = 1 in Line 21).  Set alpha_s 
to a high value (e.g. 10) to highly penalise any departure from this starting model. 
Note that alpha_s will stay fixed – if you set it too high then R2 may not converge.  
R2.out will report the value of alpha used to regularise smoothing within the image – 
the regularisation relative to a reference model is additional to this.  The user may 
find setting alpha_s useful as a comparison of inversions from two runs with 
difference reference models allows an assessment of the depth of investigation 
following the approach of Oldenburg and Li (1999). 
 
Line 23: (4 Real) a_wgt, b_wgt, rho_min, rho_max 
 
where a_wgt and b_wgt are error variance model parameters following: 
        var(R) = (a_wgt*a_wgt) + (b_wgt*b_wgt) * (R*R) 
where R is the resistance measured. 
 
It is advisable to estimate a_wgt and b_wgt from error checks in the field data (ideally 
from reciprocal measurements - not measures of repeatability).  Typically for surface 
data a_wgt will be about 0.01 ohms and b_wgt will be about 0.02 (roughly equivalent 
to 2% error). Note that if you select data_type=1 in Line 21 then although the 
resistance data are transformed into log apparent conductivities the a_wgt and b_wgt  
parameters should still reflect the variance of the resistance; rho_min and rho_max 
are the minimum and maximum observed apparent resistivity to be used for inversion 
(use large extremes if you want all data to be used).  If data are ignored by R2 
because of the apparent resistivity limits then these will be reported individually in 
R2.log.  Note that the apparent resistivity calculations assume that you have set the 
ground surface to Y=0 and that the ground surface is flat.  Note also that you can 
select to include individual errors for each measurement in the data input file 
protocol.dat – to do this a_wgt and b_wgt should be set to 0.0 – protocol.dat will then 
require an additional column (see later). 
 
Line 24:  (num_param_x Int)  param_symbol 
 
If you have specified blocking of parameters (inverse_type = 4 in line 18) so that each 
block type is disconnected from other blocks then the blocks are specified by 
producing a simple plan of the parameter mesh.  You must input for each row of 
parameters an integer representing the parameters.  This is repeated for each row.  
Make sure that you put a space between each integer.  As an example say a mesh 
with 10 elements in the y direction and 12 elements in the x direction is set to have a 
parameter patch size of 2, so in total there are 5 parameters (x) by 6 parameters (y). 
If we want to set the bottom two rows of parameters (4 elements) not to be 
smoothed along with the top four rows (8 elements) then the following could be 
input: 

 
1 1 1 1 1 
1 1 1 1 1 
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1 1 1 1 1 
1 1 1 1 1 
2 2 2 2 2 
2 2 2 2 2 

 
Repeat line 24 for all num_param_y 

 
End if 

           
End if 
 
Line 25: (Int) num_electrodes 
  
where num_electrodes is number of electrodes 
 
If (mesh_type = 3 ) then 
   

Line 26: (2 Int) j, node 
 
where j is the electrode number and node is the node number in the finite element mesh 

 
Else 
 

Line 27: (3 Int) j, column, row 
 
where j is the electrode number, column is the column index for the node the finite element 
mesh and row is the row index for the node in the finite element mesh.  The column value 
must be in the range 1 to numnp_x and the row value must be in the range 1 to numnp_y. 
Both values must be integer values. 

 
End If 
 
Repeat Line 27 for all num_electrodes 
 
END OF INPUT FOR R2.in 
   
Details of protocol.dat 
 
protocol.dat contains measurement schedule (and data for inverse if selected) 
 
Line 1: (Int) num_ind_meas 
   
where num_ind_meas is number of measurements to follow in file 
 
If (job_type = 1) then 
 

Line 2: (5 Int, 3 Real) j, elec(1,k), elec(2,k), elec(3,k), elec(4,k), v_i_ratio, v_i_ratio_0, 
data_sd 
      
where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode 
number for the  P+ electrode; elec(2,k) is the electrode number for the P- electrode; 
elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode number for 
the C- electrode; v_i_ratio is measured resistance value (or ratio of two measured values if 
inverse_type=2 and qual_ratio=1 in R2.in); v_i_ratio_0 is the resistance data for background 
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case (only read if reg_mode=2); data_sd is data standard deviation (only read if a_wgt and 
b_wgt in line 23 of R2.in are both zero) 

  
Repeat Line 2 for all num_ind_meas 

 
Else 
 

Line 3: (5 Int) j, , elec(1,k), elec(2,k), elec(3,k), elec(4,k) 
      
where j is not used (but usually is used as a measurement number); elec(1,k) is the electrode 
number for the  P+ electrode; elec(2,k) is the electrode number for the P- electrode; 
elec(3,k) is the electrode number for the C+ electrode; elec(4,k) is the electrode number for 
the C- electrode 
 
Repeat Line 3 for all num_ind_meas 

  
End if 
 
You can add as many datasets to the file protocol.dat.  Just concatenate the datasets into one file. 
R2 will continue to read and process data using the settings defined in R2.in 
END OF INPUT FOR protocol.dat 
 
Details of mesh.dat 
 
If you are working with a triangular mesh then you must create the mesh and store details of the 
geometry of the mesh in a file mesh.dat  GMS and other similar packages have mesh generation 
tools that are suitable for this purpose.  In GMS a mesh can be created and ‘materials’ defined, 
allowing some zoning of the mesh (to permit blocking at interfaces).  Also, a finer mesh can be 
created to be used as the baseline mesh with a coarser mesh to define the parameters.  The 
simplest mesh consists of an equal number of parameters and elements and one zone.  More 
complex arrangements allow for grouping of elements into parameters and multiple zones.  
Regularisation is not applied at the interface of zones. 
 
Line 1: (2 Int) numel, numnp 
   
Where numel is the number of triangle elements and numnp is the number of nodes. 
 
Line 2: (6 Int) n, index(1,n), index(2,n), index(3,n), param(n), zone(n) 
   
Where n is the element number; index(1,n), index(2,n) and index(3,n) are the node numbers of the 
element, numbered in a counter-clockwise direction; param(n) is the parameter number of the 
element (to make every element a parameter then make this value equal to the element number); 
zone(n) is the zone number for element n.  To have one zone make zone(n) equal to 1 for all 
elements.  Zones must be connected elements.  Parameters cannot occupy more than one zone.  
Note also, to make an parameter fixed to the starting resistivity, set param(n) to zero. 
 
Repeat line 2 for all numel elements. 
 
Line 3: (Int, 2 Real) n, x(n), y(n) 
   
Where n is the node number; x(n), y(n) are the coordinates of node n. 
 
Repeat line 3 for all numnp nodes. 
END OF INPUT FOR mesh.dat 
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Examples 
 
The folder “Examples” contains a number of worked examples of R2 to illustrate how to setup input 
files and work with model output. 
 
Surface electrode array 1 
The subfolder “Examples/Surface_1/dpdp” contains an example synthetic model of a surface 
electrode array using a dipole-dipole measurement scheme.  The example is taken from Binley and 
Kemna (2005).  For this problem 25 electrodes are positioned at 2m spacing on a flat surface of a 
half space.  The electrodes are numbered 1 to 25 from left to right. A forward model is setup to 
determine the measured transfer resistances for a dipole-dipole scheme with 117 measurements.  
The resistivity model is shown in Figure 1.  A small target with resistivity 10 Ωm lies within a 100 
Ωm half space: positioned vertically between depths 1m and 4m and horizontally between 14m and 
16m. 
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Figure 1:  Definition of synthetic model for surface array 1 problem 

 
The subfolder “Examples/Surface_1/dpdp/Forward” contains the protocol.dat file for the forward 
problem.  Also contained in the folder is the file R2.in which defines the geometry and resistivity 
model.  Since the model is a half space the finite element mesh must extend significantly away from 
the region of investigation (horizontally and vertically downwards).  The mesh developed consists of 
225 node columns and 49 node rows (i.e. 11025 nodes, 10752 elements).  The file R2.in shows how 
the mesh is designed to get progressively coarser away from the region of study.  Note that the co-
ordinates of the mesh have been set so that electrode 1 is at (0,0) for this problem.  In the mesh 
electrode 1 is located at node column 17 (i.e. there are 16 elements to the left of the electrode 
array to represent an infinite boundary condition to the left.   For this example 8 elements are 
placed between electrodes and so node 2 is at node column 25, node 3 is at column 33, etc.  Since 
the electrodes are located on the ground surface the row node for all electrodes is 1. All the 
electrode positions are assigned in R2.in.  The file also assigns the resistivity for all elements.  For 
this problem it is done by defining the resistivity of 9 congruent blocks of elements.  First all 
elements in the mesh are set to 100 Ωm and then 8 columns of vertically adjacent elements are 
defined to set the 10 Ωm anomaly (remember that the elements are numbered vertically then 
horizontally). 
 
When R2 is run the output files are:  

R2.out, which contains the main log of execution 
electrodes.dat, which contains the electrode co-ordinates 
R2_forward.dat, which contains the forward model, i.e. the 117 transfer resistances.  Note 
that the apparent resistivity for each of the 117 measurements is also stored. 
forward_model.dat, which contains the co-ordinates of the centroid of each finite element in 
the mesh, the resistivity of each finite element along with the logarithm (to base 10) of the 
resistivity.  This file is useful for checking if the resistivities were defined correctly in R2.in 

 
In Binley and Kemna (2005) the same forward model is presented in pseudo section format. 
 
The subfolder “Surface_1/dpdp/Inverse” contains files for running the inversion of the transfer 
resistances determined above.  For this a uniform starting resistivity of 100 Ωm is defined in the file 



R2 v2.6 (November 2010)  page 12 of 21 

R2.in.  The ‘data’ to be inverted is stored in file protocol.dat: here the values are simply the transfer 
resistances that appeared in the R2_forward.dat file described earlier.  
 
For the inverse problem we have used a patch_size of 4 in both x and y directions, i.e. each inverse 
parameter is a 4 by 4 block of finite elements. 
 
When R2 is run in this case the output files are:  

R2.out, which contains the main log of execution; 
electrodes.dat, which contains the electrode co-ordinates; 
f001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite 
element (in the entire mesh – not just the region of interest); 
f001_err.dat, which contains the misfit for each of the 117 measurements; 
f001_sen.dat, which contains the sensitivity map computed using equation 5.20 in Binley and 
Kemna (2005); 
f001.001_res.dat, which contains the computed resistivity (and log10 resistivity) for each finite 
element after the first iteration.  Note that the inversion converged after 2 iterations for this 
problem and so this is the only intermediate solution. 

 
Figure 2 shows the results of the inversion (compare with Fig 5.8 of Binley and Kemna(2005)).  This 
is an image map of the results in f001_res.dat (x and y in columns 1 and 2 and logarithm of 
resistivity in column 4).  Note that only the region within the electrode array and to a depth of 8m 
has been plotted. 
 
In Figure 3 the sensitivity map is shown (res_matrix in line 2 of R2.in is set to 1). The values are 
computed with the equation 5.20 of Binley and Kemna (2005).  High values indicate areas of high 
measurement sensitivity. 
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Figure 2:  Inverse model for surface array 1 problem with dp-dp array 
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Figure 3:  Sensitivity map for inverse model for surface array 1 problem with dp-dp array 

 
Had the problem been run with res_matrix in line 2 of R2.in set to 2 then the diagonal of the 
resolution matrix would have been computed.  This is useful for comparing models and 
measurement schemes. In Figure 4 the map of the resolution matrix diagonal is shown. Values 
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should be ideally equal to 1 (logarithm equal to 0) – values less than this indicate the effect of 
smoothing on the parameter value (influence of adjacent parameter values).  The map of the 
diagonal of the resolution matrix is very useful for determining a suitable filter for displaying results. 
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Figure 4:  Diagonal of resolution matrix for inverse model for surface array 1 problem with dp-dp 

array 
 

The subfolder “Surface_1/Wenner/Forward” contains files for running a forward model for the same 
problem but using a Wenner configuration (see figure 5.7 of Binley and Kemna(2005) for the 
pseudo section.  The subfolder “Surface_1/Wenner/Inverse” contains the files for running the 
inverse model.  Figure 5 shows the resulting model.  Figure 6 shows the diagonal of the resolution 
matrix for this solution, illustrating a weaker resolution in comparison to the dipole-dipole array (c.f. 
Figure 4), 
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Figure 5:  Inverse model for surface array 1 problem with Wenner array 
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Figure 6:  Diagonal of resolution matrix for inverse model for surface array 1 problem with Wenner 

array 
 
Surface electrode array 2 
The subfolder “Examples/Surface_2/dpdp” contains an example similar to the previous case but with 
varying surface topography.  Here the ground surface slopes from 0m at electrode 1 to 4.8m at 
electrode 25 (see Figure 7).  The file R2.in is now different for the forward and inverse model runs 
through the addition of topography data. Figure 8 shows the inverse solution for this case. 
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Figure 7:  Definition of synthetic model for surface array 2 problem 
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Figure 8:  Inverse model for surface array 2 problem with dipole-dipole array 

 
Surface electrode array 3 
Occasionally it is useful to fix resistivity values within the mesh. This is particularly useful for time 
lapse imaging where we wish to focus on changes within a particular part of the mesh. In R2 this 
can be achieved with a quadrilateral mesh by defining left, right, upper and lower limits of the 
parameter zone (see Line 16 and line 17 definitions for R2.in). To illustrate this we invert data from 
a previous example but constrain the parameter zone to a smaller region of the mesh. 
 
The subfolder “Examples/Surface_3/dpdp” contains an example similar to the Surface array 1 
example but this time the inverse model is defined so that not all elements are parameters. The 
forward model used for generating the data file (protocol.dat) is that from Figure 1, i.e. in 
“Examples/Surface_1/dpdp/Forward”.  
 
For this example we use a patch_size of zero in the x and y directions and then define the location 
of the zone to be parameterised. In R2.in a patch of 4 elements per parameter is defined in the 
horizontal direction starting at element 1.  All elements are grouped into parameters in the 
horizontal and thus there are 56 patches of 4 elements declared (a total of 224 elements).  In the 
vertical we define the parameter zone to be from 1m to 6m depth and a patch size of 2 elements is 
used (10 parameters in total corresponding to the 20 elements).  The starting element for the 
parameterisation in the vertical is 5 (since the first four elements cover the first 1m in this case). 
Note that the resistivity of any element that is not declared to contribute to a parameter remains 
unchanged from the starting value (in this case 100 Ωm). 
 
Figure 9 shows the resultant inverse model.  The sharp boundaries (in the vertical) at 1m and 6m 
are a result of the constrained parameter zone (there is no smoothing over the boundaries).   
 
Note that if you restrict the parameter zone too much then convergence of the solution may be 
problematic (since you will be reducing the degrees of freedom of the inverse solution). 



R2 v2.6 (November 2010)  page 15 of 21 

 

0 5 10 15 20 25 30 35 40 45
-8

-4

0

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

Log10 (resistivity in Ωm)

Distance (m)

Depth 
(m)

 
Figure 9:  Inverse model for surface array 3 problem 

 
Surface electrode array 4 
The subfolder “Examples/Surface_4/dpdp” contains an example similar to the Surface array 1 
example but this time the smoothing is set to be anisotropic.  For this case the smoothing is 
exaggerated in the vertical by setting alpha_aniso in Line 22 of R2.in to 0.1 (10 times more 
smoothing in the vertical).  Figure 10 shows the resultant inversion (c.f. Figure 2 with isotropic 
smoothing). 
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Figure 10:  Inverse model for surface array 4 problem  

 
Surface electrode array 5 
The examples so far have used a simple quadrilateral mesh definition.  For the surface array 2 
example the mesh was distorted by changing the topography of the upper surface of the mesh.  In 
this example we illustrate how to change the mesh in a more flexible manner.  By setting 
mesh_type to 5 in Line 2 of R2.in we can specify the row coordinates for every column of the 
mesh.  This requires more input information than the previous examples but gives much greater 
flexibility.   
 
The subfolder “Examples/Surface_5/dpdp/Forward” contains a forward modelling example similar to 
the Surface array 1 example but in this case a zone of low resistivity lies just below the ground 
surface and varies in thickness from 0.5m at electrode 1 to 1m at electrode 25.  In addition, the 
electrodes are located in this example at the bottom of this conductive zone.  Such a model may be 
representative of electrical imaging using electrodes placed at the bed of a stream (the conductive 
zone representing the stream). 
 
To setup this forward model the 49 row coordinates are defined for all 225 column positions.  In 
addition, R2.in must also contain the definition of more groups of elements than before to represent 
the conductive zone (remember that the zones are defined as groups of congruent elements and 
since the elements are numbered in the vertical then we must define 224 such groups for this 
problem, in addition to the rest of the region, i.e. 225 groups in all). 
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Figure 11:  Forward model for surface array 5 problem  

 
 

Surface electrode array 6 
The subfolder “Examples/Surface_5” contains three examples illustrating the use of a reference 
resistivity model.  The examples use the dipole-dipole forward model from Surface electrode array 1 
but invert three difference cases with reg_mode set to 1 (see line 21 of R2.in). 
 
In case_01 we set αs to 10 with a resistivity background (starting model or reference model) equal 
to a uniform ρback=100Ωm. The results are shown in Figure 12a.  The result is similar to that shown 
in Figure 2 (no regularisation relative to a reference model). 
 
In case_02 we set αs to 50 with a uniform ρback=100Ωm. The results are shown in Figure 12b.  The 
target recovery is now weaker as the inversion applies more penalty to deviation from 100Ωm. 
 
In case_03 we set αs to 10 with a uniform ρback=50Ωm. The results are shown in Figure 12c.  
Recalling that the background resistivity in the forward model is 100Ωm, Figure 12c illustrates the 
zone over which the measurements have sensitivity – the lower left and right regions are clearly not 
influenced by the measurements in this case (which is consistent with the resolution matrix in Figure 
4). 
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Figure 12:  Surface array 6 – regularising relative to a reference resistivity model.  

(a) αs=10, ρback=100Ωm. (b) αs=50, ρback=100Ωm. (c) αs=10, ρback=50Ωm. 
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We can use these results to assess the depth of investigation (DoI), following the method of 
Oldenburg and Li (1999).  We can compute the value: 
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Where m1 are the inversion results in Figure 12a (in log units) using 100Ωm as a reference and m2 
are the inversion results in Figure 12c (in log units) using 50Ωm then, m1,r = log10(100) and m2,r = 
log10(50).  Figure 13 shows the variation of R. Oldenburg and Li (1999) suggest a reasonable value 
of R = 0.1 or 0.2 as a suitable depth of investigation.  Figure 13 shows a contour of R = 0.2 to 
illustrate this. 
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Figure 13:  Depth of investigation for Surface array 6 problem. 
 

Cross borehole array 
The subfolder “Examples\Xbh” contains forward and inverse models for two cross borehole 
examples illustrated in Binley and Kemna (2005).   The first case considered here is included in 
“Examples\Xbh\8m_skip7”. In this case measurements are made between two boreholes 8m apart, 
as illustrated in Figure 13.  As in previous examples a zone with resistivity 10 Ωm is embedded in 
the 100 Ωm half space. The measurement scheme used is a “skip 7”: dipole – dipole with 7 
electrode in between each current and potential electrode pair (see the protocol.dat file). 
 
The forward model input files are included in “Examples\Xbh\8m_skip7\forward” and the inverse 
model files are in “Examples\Xbh\8m_skip7\inverse”. Figure 14 shows the output of the inverse 
solution using the forward model as “data”. 
 
The second cross borehole case is for two boreholes 15m apart, as illustrated in Figure 15. The 
forward model input files are included in “Examples\Xbh\15m_skip7\forward” and the inverse model 
files are in “Examples\Xbh\15m_skip7\inverse”. Figure 16 shows the output of the inverse solution 
using the forward model as “data”.  The effect of increased spacing of the boreholes on sensitivity 
of the measurements can be seen by comparing Figures 16 and 14. 
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Figure 13:  Forward model definition for cross borehole case 1 
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Figure 14:  Inverse model for cross borehole case 1 
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Figure 15:  Forward model definition for cross borehole case 2 
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Figure 16:  Inverse model for cross borehole case 2 
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Common User Errors 
 
Below is a list of some common user errors that I have encountered.  This may be useful for new 
users. 
 
A common mistake is for a new user to go straight into trying to run an inverse solution without 
getting a good feeling for the model that is being used.  New (and old) users working on new 
problems should first try run a forward model for a uniform resistivity.  This will help sort out any 
problems with the definition of the mesh, etc.  It will also be useful in understanding the quality of 
the forward model and help judge this against the quality of the data. 
 
If you can, run the code from the command line.  You will need to run CMD in Windows and create 
a DOS window, then move to the correct folder and then type R2.  Doing it like this help see any 
errors if the program crashes unexpectedly because of incorrect input. 
 
In the example input files provided there are comments at the end of most lines in the form  
“<< comment” .  Note that these are always at the end of a line.  You cannot have these appearing 
on their own in a line.  If you do then R2  will try read this comment when it is expecting numerical 
input and simply crash.   
 
The mesh is based on elements and nodes.  Lines 3 to 9 are based on nodes, whereas Line 13 is 
based on elements.  It is important to understand the difference and not mix the two. 
 
On Line 22, specifying a tolerance of 1.0 means that you are happy that you have estimated your 
errors correctly (Line 23).  Don’t just use the a_wgt and b_wgt values in the example files – spend 
time to understand the likely errors in your measurements and model. 
 
Setting data_type to 1 in Line 22 means that the data you input will be log transformed, not that 
you have to supply logged data.  Note that you do not need to worry about the sign (polarity) of the 
data if you select the log data type – R2 will deal with this. 
 
Setting the minimum and maximum apparent resistivity (Line 23) is only valid if you have a flat 
surface and an infinite half space problem, otherwise the geometric factors that R2  will compute 
will be incorrect. 
 
For a quadrilateral mesh the electrode positions are defined by their column and row positions in 
the mesh (Line 27).  These are not the co-ordinates of the electrodes but their position in the mesh, 
 
In the definition of the input files, each line has been defined in terms of the type of numbers that 
are required.  For example, (Real, 2 Int, 2 Real) means one real number, followed by two integers, 
followed by two reals.  You can substitute integers for reals but bit the other way round.  So if the 
code is expecting an integer and your line entry has 1.3, for example, then the code will crash. 
 
Note that the data in protocol.dat should be provided in transfer resistances, NOT apparent 
resistivities.  Also note that the polarity should be retained in the data. It is very wise to check the 
polarity of your measurements – you can do this by computing the geometric factor for your 
measurement configuration (provided topographic and non-infinite boundaries are not significant).  
If you don’t know how to compute the geometric factors then you should run a forward model with 
R2  for a uniform half space and compare the computed polarities with those in your data.  For a 
surface electrode array your data should be the same polarity as the model, otherwise the 
measurements will not be included in the inversion.  For electrodes not on the surface the polarity 
can change as the resistivity structure changes in the inversion.  
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If you make use of R2 then please contact the author (a.binley@lancaster.ac.uk) so that 
you can be added to a mailing list for future updates, fixes, etc. 
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